Financial derivatives formerly kap 1-5

Övningen är skapad 2025-02-02 av Makizon. Antal frågor: 13.




Välj frågor (13)

Vanligtvis används alla ord som finns i en övning när du förhör dig eller spelar spel. Här kan du välja om du enbart vill öva på ett urval av orden. Denna inställning påverkar både förhöret, spelen, och utskrifterna.

Alla Inga

  • basis b=S-F
  • Suppose continuously compounded interest rate, what is today's spot price (if it's a 9m forward contract)? S=F/e^(r*(m/12))
  • Forward price formula F=S*e^(r*T)
  • PV of dividends? PV of div=div/e^(r*(m/12))
  • forward price when there's dividends? F=(S-PV div)*e^(r*(m/12))
  • Value of long position f=(F2-F1)*e^(r*(m/12))
  • What are the rates with continuous compounding? (semi annual) Rc=2*ln(1+(zero/2))
  • What is the forward rate for the six-month period beginning in 12 months with continuous compounding? f(12,18)=((Rc2*1,5)-(Rc1*1))/(1,5-1)
  • What is the forward rate for the six-month period beginning in 12 months with semiannual compounding? f(12,18)=2*e^(Rc1*1)+2*e^(Rc2*1,5)+2*e^(Rc3*2)
  • Value of FRA with fixed and compounded semi annually FRA(12,18)=(principal*(fixed-fsemiannual)*(1,5-1))/e^(Rc2*1,5)
  • What is the minimum variance hedge ratio? h*=p*(deltaS/deltaF)
  • What is the optimal number of futures contracts with no tailing of the hedge? no tailing=h**(asset units/future contract units)
  • What is the optimal number of futures contracts with tailing of the hedge? with tailing=h**(asset units/future contract units)*(S/F)

Alla Inga

(
Utdelad övning

https://spellic.com/swe/ovning/financial-derivatives-formerly-kap-1-5.12426052.html

)