PDE theory

Övningen är skapad 2023-01-13 av nathaliepettersson. Antal frågor: 6.




Välj frågor (6)

Vanligtvis används alla ord som finns i en övning när du förhör dig eller spelar spel. Här kan du välja om du enbart vill öva på ett urval av orden. Denna inställning påverkar både förhöret, spelen, och utskrifterna.

Alla Inga

  • Definition 2.1 Characteristics of the PDE The solution of X'(s)=V(X(s), s) is called the characteristics of the PDE
  • Definition 2.2 Breaking time of the burger equation The time Tb(u0)≥0 is called the breaking time (in the future) of the burger equation with initial data u0
  • Definition 2.3 Global weak solution of the burger equation A bounded function u:Rn x R -> R is said to be a global weak solution to the burger equation/conservation law ∂tu+u∂xu=0 if u(x, t) satisfies ∫Rn∫R(∂tv(x, t)u(x, t) + divxv(x, t)*J(u(x, t)))dtdx = 0 for all v€Cc'(Rn x R)
  • Definition 3.1 + 3.2 Spherically symmetric and spherical wave A function u:Rn->R, u=(u(x), is said to be spherically symmetric if there exists a function û:[0, inf) -> R such that u(x) = û(|x|), we call û the radial representation of u. A spherical wave is a strong solution u(x, t) of the 3-dimentional wave equation ∂tu-c^2∆xu=0, x€R3, t€R, such that u(x, t) is spherically symmetric for all t€R
  • Definition 4.1 Fundamental solution of the heat equation (or the heat Kernel) The function K(x, y, t) given by K(x, y, t) = 1/((4πt)^(n/2))*exp(-(x-y)^2/4t), is called the fundamental solution of the heat equation or heat kernel
  • Definition 5.2 Weak/variational formulation of poisson equatino The problem "Find u€C0'(Ω) such that -∫Ωdivv(x)*divu(x) dx = ∫Ωv(x)f(x)dx, for all v€C0'(Ω)" is called the weak (or variational) formulation of the problem ∆u = f(x), x€Ω, u(x) = 0, x€∂Ω in the space C0'(Ω)

Alla Inga

(
Utdelad övning

https://spellic.com/swe/ovning/pde-theory.11338885.html

)